88 research outputs found

    Ozone laminae near the edge of the stratospheric polar vortex

    Get PDF
    Analysis of ozonesonde data collected at high northern latitudes in winter and spring shows that laminae of enhanced and depleted ozone are associated with the polar vortex. In January and February, they are most common at all latitudes in the potential temperature range 370-430 K, but are abundant up to 500 K between 60 and 70 deg N. In March and April they occur most frequently northward of 75 deg N, and are abundant up to 520 K, whereas they are largely confined to the range 320-440 K at lower latitudes. Analysis of ozone lidar data obtained during AASE-1 depicts clearly the extrusion of laminae of enhanced ozone concentration from the polar regions in the altitude range 13-15 km. These extrusions form a class of laminae which transport ozone equatorward in the lowest levels of the stratosphere

    Ozone and NO2 measurements from Aberystwyth and Lerwick

    Get PDF
    Measurements of the total column of ozone and NO2 were obtained by a SAOZ UV/Visible spectrometer at Aberystwyth (52.4 deg N, 4.1 deg W) and Lerwick (60.1 deg N, 1.2 deg W) during the period March 1991 - April 1992. NO2 measurements show a marked decrease in 1992 compared with 1991, due to the effect of aerosols from Mt. Pinatubo. Ozone measurements appear to have been affected by the aerosols - comparisons with both Dobson and TOMS measurements are presented

    Aerosol in the tropical tropopause layer

    Get PDF
    This thesis details the ACTIVE campaign in the tropics of northern Australia during 2005-2006 (based in Darwin). The focus of the campaign was to find the influence of tropical convection on the aerosol and chemical content of the Tropical Tropopause Layer [TTL] and the cirrus cloud cover in the area, which is important for the global energy budget. This study details the background climatology of the Darwin region with statistical categorisation of the trace gases and particles. The TTL had regions of extremely high aerosol number concentration, much higher than that of the PBL. The 10 to 1000 nm particle concentrations were as high as 25,000 cm-3 and 100 to 1000 nm were as high as 1000 cm-3. High aerosol concentrations were usually found in cloud-free conditions; cloudy regions were typically low in aerosol number. Wind data and trajectories (BADC) were used to find the origin of the high particle concentrations. Aerosols were found to be nucleating in outflow regions of convective anvils. SO2 oxidation to H2SO4 is a widely accepted mechanism for nucleation. A binary mechanism (H2O-H2SO4), with SO2 as the precursor, was found to be inadequate in explaining the nucleation and growth rates -- tested using an aerosol sectional model. However, it was found, via back trajectory analysis, that the climatology of Darwin was influenced by local and long-range sources, including advection from Indonesia and the Tropical Warm Pool. These distant sources could have introduced condensable matter, with aerosol precursor properties (certain organic compounds). The aerosol model found a condensable precursor concentration of at least 300 pptv was necessary to replicate the observations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelling the effects of gravity waves on stratocumulus clouds observed during VOCALS-UK

    Get PDF
    During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds

    Early Evolution of the 23–26 September 2012 U.K. Floods: Tropical Storm Nadine and Diabatic Heating due to Cloud Microphysics

    Get PDF
    Major river flooding affected the United Kingdom in late September 2012 as a slow-moving extratropical cyclone brought over 100 mm of rain to a large swath of northern England and north Wales, with local accumulations approaching 200 mm. The cyclone developed on 20–22 September following the interaction between an equatorward-moving potential vorticity (PV) streamer and Tropical Storm Nadine, near the Azores. A plume of tropical moisture was drawn poleward ahead of the PV streamer over a low-level baroclinic zone, allowing deep convection to develop. Convectively driven latent heat release reduced upper-tropospheric PV near the streamer, causing it to fracture and cut off from the reservoir of high PV over the United Kingdom. Simulations using the Weather Research and Forecasting Model with 4-km horizontal grid spacing in which microphysical heating and cooling tendencies are set to zero, alongside calculations of instantaneous diabatic heating rates and PV tendencies along trajectories, reveal that deposition heating contributed strongly to the fracturing of the PV streamer into a discrete anomaly by directly reducing upper-tropospheric PV to the streamer’s east. Condensation heating contributed to lower-tropospheric PV generation along the cold front as the cyclone developed, while cooling due to sublimation, evaporation, and melting modified the PV much less strongly. The results of this case study show that the collocation of strong deposition heating with positive absolute vorticity in the upper troposphere can lead to substantial PV modification and a very different cyclone evolution to that when deposition heating is suppressed
    • …
    corecore